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SUMMARY 

The Australian sheep industry is characterised by the use of many sheep breeds and regular 

crossing among them. For the purposes of genetic evaluation, sheep are currently assigned breed 

proportions based on pedigree. SNP genotypes have been used in many applications to reveal 

population structure including livestock breeds. In this paper, we investigate the use of SNP 

genotypes to determine breed structure in Australian sheep breeds using the genotype database 

assembled for genetic evaluation. Algorithms implemented in two software programs, 

ADMIXTURE and BreedComp were able to identify sheep breeds and genetic groups within the 

Merino breed. These results can potentially lead to more accurate identification of breed content, 
and more accurate predictions of breeding value through improved allocation to genetic groups. 

 

INTRODUCTION 

A number of sheep breeds play an important role in the Australian sheep meat and wool 

industries, with the Merino dominant for wool production, Border Leicester, Coopworth and 

composite breeds used for maternal performance, and Poll Dorset, Texel, and Suffolk and White 

Suffolk used as terminal sires for meat production. Crossing among these breeds is common not 

only at the commercial level, but also in seed-stock flocks where some breeders seek to exploit breed 

differences. Considerable genetic diversity is present within the Merino breed, such that many flocks 

are considered to be different genetic groups for the purposes of evaluation. Currently, the evaluation 

system accounts for breed and within-breed genetic group differences using the Westell-Quaas 
approach (Westell et al. 1988), in which the breed composition of each animal is modelled through 

the pedigree. With increasing availability of genomic data, the utility of this data in estimating sheep 

breeds and genetic groups within breeds has been examined. Various authors have investigated the 

use of genomic data to identify population structures in beef breeds (Sölkner et al. 2010; Kuehn et 

al. 2011a; VanRaden et al. 2011; Frkonja et al. 2012) and sheep breeds (Dodds et al. 2013). In this 

paper, we investigate the use of genomic data to identify breed and within-breed population 

structures in Australian sheep. 

 

MATERIALS AND METHODS 

50K SNP genotypes (as described by Moghaddar et al. (2015)) and pedigree-based breed 

proportions were collated for 31,125 sheep from the reference and industry populations used for 

genomic evaluation in Australia. These data contained records for  straight-bred sheep with 623 
Border Leicester, 1,966 Poll Dorsets, 28 Texels, 37 Suffolks, 39 White Suffolks, and 14,440 

Merinos, where “straight-bred” is defined here as containing at least 0.95 of that breed proportion 

from the pedigree. Of the recorded straight-bred Merino sheep, some were recorded as straight-bred 

of a particular Merino group with 456 as ‘ultra-fine’, 2,907 as ‘fine-medium’ and 967 as ‘strong’. 

The genomic relationship matrix (G) was calculated using the method by Yang et al. (2010) and a 

singular value decomposition performed on the G matrix, such that 𝐺 = 𝑈Σ𝑉. Vectors of the U 
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matrix were then analysed visually in ‘R’ (R Core Team 2016) to determine if breeds and genetic 

groups could be identified. 

Analytical tools were used to predict breed and genetic group proportions including supervised 

ADMIXTURE (Alexander et al. 2009) and constrained genomic regression, hereby referred to as  

BreedComp (Boerner, 2017), which is a constrained (i.e. estimated proportions are less than one) 
version of the approach by Chiang et al. (2010) and Kuehn et al. (2011).  For both algorithms, a 

training set of animals was created, comprising animals from straight-bred animal clusters for each 

breed or genetic group of Merinos based on previous pedigree-based breed proportions. This training 

set contained seven breeds,  497 Border Leicesters, 1902 Poll Dorsets, 21 Texels,  36 Suffolks, 339 

‘ultra fine’ Merinos, 488 ‘fine-medium’ Merinos and 216 ‘strong’ Merinos, resulting in 3,499 sheep 

used for training and 27,626 sheep for validation. While a group of straight-bred White Suffolks 

were recorded, these animals did not appear to be genetically different to sheep recorded as partly 

White Suffolk. This breed was not included in the training animals, with animals previously assigned 

to this breed attributed to proportions of the other breeds by the algorithms.  

Prediction accuracy was measured using Root Mean Squared Error (RMSE), based on the 

differences between current pedigree based breed assignments, and those estimated by the predictive 

algorithms. RMSE values for each breed or genetic group were calculated by 𝑅𝑀𝑆𝐸 =

√(∑ (�̂�𝑖 − 𝑞𝑖)
2𝑛

𝑖=1 )/𝑛 where �̂�𝑖 is the breed proportion predicted using genomic data for the 𝑖th 

animal, 𝑞𝑖 is the breed proportion from the pedigree for the 𝑖th animal, and 𝑛 is the number of animals 

modelled. RMSE was calculated for each breed individually, as well as an overall value across all 

breeds. Algorithms producing lower RMSE values were deemed to produce more accurate estimates. 

 

RESULTS AND DISCUSSION 

Breeds could be differentiated in plots of the first two vectors of the 𝑈 matrix (see Figure 1). 

Distinct clusters of straight-bred Border Leicester, Poll Dorset and Merino animals could be 

identified in the extremes of these plots from their pedigree based breed assignments and a small 

cluster of Suffolk animals could be identified in the Suffolk plot. Further, groups of crossbred 

animals could also be differentiated in between the clusters of straight-bred animals, e.g. a group of 

¼ Merino and ¾ Border Leicester can be seen in the lower middle of the their respective plots. This 

is also true for other clusters of animals in these plots, which can be attributed visually to varying 

combinations of breeds.  

 It was also possible to identify genetic groups of Merino animals in the 4th and 5th vectors of the 

𝑈 matrix (see Figure 2), with differentiation of ultra-fine, fine-medium and strong sheep possible. It 
is evident from these plots that some sheep previously assigned to the fine-medium group may 

instead belong to the ultra-fine group. This would suggest that historically the fine-medium category 

has become a default category for sheep that have been hard to group. It can also be seen in Figures 

1 and 2 that many animals appear to have been assigned to the wrong breed or genetic group.  

The ADMIXTURE and BreedComp algorithms were able to predict breed and genetic group 

proportions based on the training animals provided to them, with BreedComp appearing to provide 

slightly more accurate estimates. RMSE values are presented, where possible (see Table 1), with 

BreedComp producing lower RMSE values for a larger number of breeds than ADMIXTURE. 

Caution is warranted in interpretation of these values presented here because of errors in the 

pedigree-based assignments. In addition, some Merino sheep of unknown type have been allocated 

to a default category. 
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Figure 1: Pedigree based breed proportions of main sheep breeds in each genotyped animal. 

Red points indicate animals with 100% content of the given breed, and blue points 0%. 

BreedComp was able to identify all breeds and genetic groups of sheep included in the training 

animals. ADMIXTURE did not identify the Texel breed from the training animals, instead 

identifying a fourth genetic group of merinos. Some sheep were reassigned by both algorithms, for 

instance, many sheep were reclassified from the fine-medium Merino group to the ultra-fine group. 

This can be seen in the RMSE values for these categories (see Table 1) which were larger than for 

the other categories. Importantly for routine application, BreedComp was approximately 45 times 

faster than ADMIXTURE, with BreedComp running for 4.1 minutes on a single CPU core, while 

ADMIXTURE ran for 3.1 hours on 28 CPU cores. BreedComp appears to be slightly more accurate 

and faster than ADMIXTURE for these data. 

 

 
Figure 2: Pedigree based proportions of each genetic group for Merinos. Red points indicate 

animals with 100% content of the given breed, and blue points 0%. 
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Table 1: RMSE for breed composition predictions for ADMIXTURE and BreedComp. 

Breed ADMIXTURE1 BreedComp 

Overall 0.181 0.170 

Border Leicester 0.059 0.055 

Poll Dorset 0.059 0.095 

Texel - 0.027 

Suffolk 0.172 0.072 

Merino (Ultra-Fine) 0.242 0.298 

Merino (Fine-Medium) 0.254 0.247 

Merino (Strong) 0.190 0.190 
1ADMIXTURE was unable to identify the Texels thus a RMSE value was not calculated.  

Another issue with using these algorithms to estimate breed proportions is their inability to 

estimate breed proportions for breeds lacking genotyped straight-bred animals. For instance, a small 

cluster of sheep can be identified just to the upper right of the Merinos that are ½ Merino and ½ 

Dorper. These sheep are currently being assigned by BreedComp as ¾ Merino and ¼ Poll Dorset. 

Without the inclusion of straight-bred Dorper sheep in the data, these sheep cannot be correctly 

classified. A small cluster can also be identified that contains a portion of Coopworth. 

Application of the BreedComp algorithm would allow for more accurate estimation of breeding 

values for Australian sheep, especially for animals without pedigree information and only genomic 

data. Animals previously assigned to the wrong breed or genetic group can also be reassigned, 
further improving genetic evaluation systems.  
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